

VISION & CORE VALUES

WE CONNECT SCIENCE TO LIFE FOR A BETTER FUTURE

Customer Focus

Agility

Collaboration

Passion

Sustainability

Sustainability is incorporated into the vision as a core value.

MANAGING THE IMPACTS
OF CLIMATE CHANGE

Climate Action

Renewable Energy

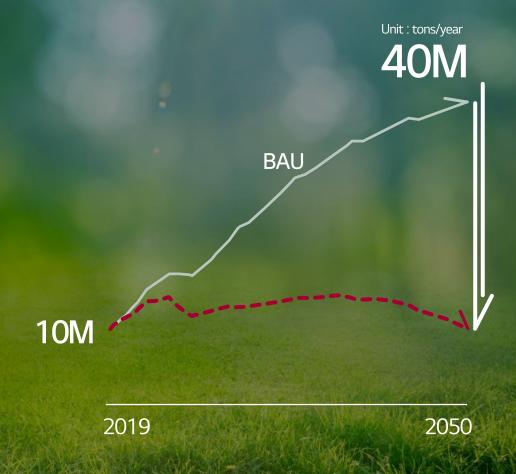
Water Management

LEADING SUSTAINABLE INNOVATION FOR CUSTOMER

Responsible Products

Circular Economy

Environment Protection


MAKING A POSITIVE CONTRIBUTION TO SOCIETY

Responsible Supply Chain

Human Rights / Diversity

Safety / Wellness

CARBON NEUTRAL GROWTH 2050

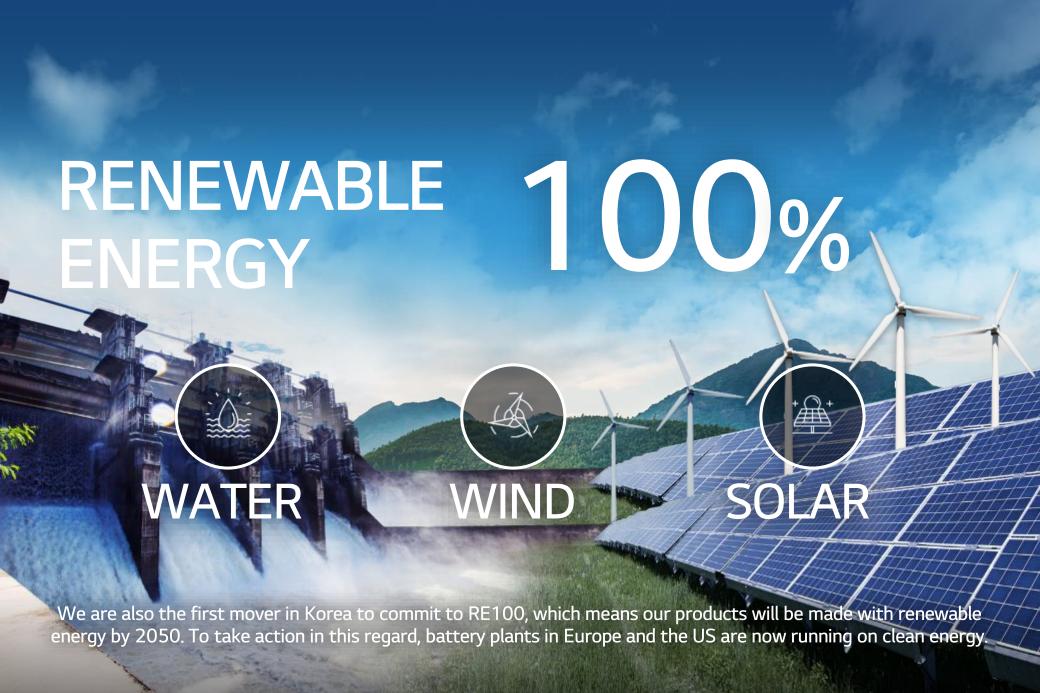
We are proud to be the first Korean chemical company to declare 'Carbon Neutral Growth by 2050'. It is our firm determination to keep carbon emissions flat to 2019 level while pursuing a sustainable growth.

CARBON NEUTRAL GROWTH 2050

30,000,000t

12.5M

Fossil Fuel Vehicle*


*Carbon Emissions a year

220M

Pine Trees

To achieve this ambitious target, 30 million tons of carbon, equivalent to emissions from 12.5 million of fossil fuel vehicles a year should be reduced in our global operations. It is the same amount that can be offset by planting 220 million of pine trees.

CIRCULAR ECONOMY

There is no planet B. Moving away from linear economy towards recycling economy is not our final destination.

Instead, we are on our way to circular economy making our products more adaptable to recycling and increasing use of bio sources.

Our Goal:

To achieve the transition to circular economy, we must develop more sustainable plastic through collaboration with global customers, while maintaining virgin-like quality and with far better environmental benefit.

Sustainability DNA

SUSTAINABLE PLASTIC

e-MOBILITY (EV, ESS BATTERY)

PHARMACEUTICALS

Strategic foresight in sustainability is put into our perspective and products we supply.

Product Portfolio

Mechanical Recycle	PC	PC/ABS	PBT/PET	
Chemical Recycle	PC	PC/ABS	PBT	TPEE
Bio-Based	PBT	TPEE	PA56 (Replace PA66)	
Bio-Mass Balanced	PC	PC/ABS		

Mechanical Recycle

Technical Description

Grinding

Compounding (In-House)

Consumer Product -> Post Consumer Recycled (PCR) Resin -> PCR Compound

Source: Sheet, Wafer tray, Headlamp

Business Summary

PCR Sales Record: 11,000MT ('19)

PCR Supply Capacity: 32,000MT

PCR Product Portfolio

Non-Reinforced: 10 grades Reinforced: 5 grades

PCR PC Content Max 85%

PC/ABS

Non-Reinforced: 9 grades Reinforced: 4 grades

PCR PC Content Max 60%

PBT/PET Reinforced: 2 grades **PCR PET Content** Max 30%

Target Application

E&E Industry

- Al Speaker

- Mobile Phone

- Laptop

- Charger

- Tablet PC

- Printer

Automotive Industry

Overhead console - Door Garnish

- Airvent

- Cockpit

- Audio

- Trim

Quality Control (3rd party Certification) **UL ECV**

(Environmental Claim Validation)


TUV

Technical Inspection Association (Technischer Überwachungsverein)

Goal One : Maintaining Virgin-Like Quality

Goal One Problem : Maintaining Virgin-Like Quality is Not Easy

Virgin

PCR

Quality Control of Full Value Chain (Sourcing to Processing)

Post Consumer Goods Collector (Outsourcing)

PCR Supplier (Outsourcing)

LG Chem

PCR¹⁾ Source

- Collect
- Sorting

PCR Resin

- Crunch/Clean
- Compound with PCR source

Process

- Modify /Reinforcement
 - Compound with Virgin product

PCR Product

- Packaging
- Quality Assurance (Provide COA)

Quality Control Points

- Use highly qualified
 PCR source
 (Proper molecular weight source for compound processing)
- Strict warehouse inspection (7 categories)
- Provide direct guidance to improve PCR resin quality
- 3rd party certification (UL ECV, TUV)

- Use customized screw configuration
- Strict appearance inspection
 (Bright color products)
- 3rd party certification (UL ECV, TUV)

Warehouse Inspection for PCR Resin

Strict inspection for screening contaminated PCR resin. Year after year, we are providing guidance to our PCR supplier in order to improve the quality.

Inspections for Virgin source

2

- Melt Flow Rate
- Color(Yellow Index)

Inspections for PCR source

7

- Melt Flow Rate
- Color(Yellow Index, Darkness)
- Izod Impact Strength
- HDT¹⁾
- Foreign Material
- Halogen/Heavy metal
- PDI(Poly dispersity Index)

[Color chip of Virgin/PCR resin] LG Chem LG Chem <Virgin> <PCR> [Pancake test for inspection foreign material]

^{1) &}lt;u>H</u>eat <u>D</u>eflection <u>T</u>emperature

Control of PCR Source and Processing

PAST VERSION

Source Control

Water Bottle

CD/DVD

Very High and Low (MFR 3~70) Molecular Weight Source
-> Broad Dispersion + Unstable Quality between Lots

Process Control

More Residential Time inside Extruder
-> Possible Degradation + Less Self Wiping of Screw

TODAY VERSION

Proper (MFR 15~25) Molecular Weight Source
-> Narrow Dispersion + Stable Quality between Lots

Customized Screw Configuration

Less Residential Time inside Extruder
-> Prevent Degradation + Enhance Self Wiping of Screw

Virgin-Like Quality

经加强	Test class	Test Method	Test Condition	Unit	LUPOY HI5002A	LUPOY ER5002N
Physical -	Specific gravity	ISO 1183		g/cm ³	1.11	1.11
	Melt Flow rate	ISO 1133	260℃, 5kg	g/10m	25	25
	Tensile Elongation	ISO 527	- 50mm/min	%	> 100	> 90
	Tensile Strength	ISO 527		MPa	54	49
	Flexural Modulus	ISO 178	2 / .	MPa	2,300	2,280
Mechanical –	Flexural Strength	ISO 178	- 2mm/min	MPa	84	80
	Notched Izod Impact	ISO 180/A	23℃	KJ/m² –	55	45
			-30℃		16	31
	Notched Charpy Impact	ISO 179-1	23℃		53	45
THE A			-30℃		THE RESERVE	
Thermal -	Heat Distortion Temp	ISO 75	1.8MPa	°C .	89	95
	Vicat Softening Temp	ISO 306	50N, 50℃/hr	℃ -	111	111
Heat Aging (90°C/1000hr)	Tensile Strength	ISO 527	50mm/min	Retention %	57	51
	Notched Charpy Impact	ISO 179-1	KJ/m ²	Retention %	40	38
Others	TVOC	LGC Methcod	250℃, 10min	μg/g	1768	802
		VDA278	90℃		< 0.1	< 0.1
	Odor	VDA270 (B,3)	80℃, 2hr	Level	2.5	2

Note) Typical values are only for material selection purpose, and variation within normal tolerances are for various colors. Values given should not be interpreted as specification and not be used for part or tool design.

Virgin-Like Quality

公 排 生	Test class	Test Method	Test Condition	Unit	LUPOY HR5006A	LUPOY ER5006N
Physical –	Specific gravity	ISO 1183		g/cm³	1.13	1.13
	Melt Flow rate	ISO 1133	260℃, 5kg	g/10m	21	23
Mechanical	Tensile Elongation	ISO 527	- 50mm/min	%	> 100	> 90
	Tensile Strength	ISO 527		MPa	51	51
	Flexural Modulus	ISO 178	2 / 1	MPa	2,200	2260
	Flexural Strength	ISO 178	- 2mm/min	MPa	79	83
	Notched Izod Impact	ISO 180/A	23℃	KJ/m² —	48	48
			-30℃		36	35
	Notched Charpy Impact	ISO 179-1	23℃		52	50
			-30℃			
Thermal	Heat Distortion Temp	ISO 75	1.8MPa	°C	100	99
	Vicat Softening Temp	ISO 306	50N, 50℃/hr	℃ -	120	121
Heat Aging (90℃/1000hr)	Tensile Strength	ISO 527	50mm/min	Retention %	54	53
	Notched Charpy Impact	ISO 179-1	KJ/m ²	Retention %	45	45
Others	TVOC	LGC Methcod	250℃, 10min	μg/ġ	1832	573
		VDA278	90℃		< 0.1	< 0.1
	Odor	VDA270 (B,3)	80℃, 2hr	Level	2.5	2

Note) Typical values are only for material selection purpose, and variation within normal tolerances are for various colors. Values given should not be interpreted as specification and not be used for part or tool design.

Virgin-Like Quality

创造	Test Class	Test Method	Test Condition	Unit	LUPOY HR5007AC	LUPOY ER5007N
Physical -	Specific gravity	ISO 1183		g/cm ³	1.14	1.15
	Melt Flow rate	ISO 1133	260℃, 5kg	g/10m	19	21
30 4 6	Tensile Elongation	ISO 527	- 50mm/min	%	> 100	> 90
2016年10月	Tensile Strength	ISO 527		MPa	52	53
	Flexural Modulus	ISO 178		MPa	2,200	2270
Mechanical —	Flexural Strength	ISO 178	2mm/min	MPa	84	84
	Notched Izod Impact	ISO 180/A	23℃	KJ/m² —	51	52
			-30℃		37	37
	Notched Charpy Impact	ISO 179-1	23℃		53	55
N A STATE OF			-30℃			
Thermal -	Heat Distortion Temp	ISO 75	1.8MPa	°C	109	106
	Vicat Softening Temp	ISO 306	50N, 50℃/hr	℃ -	130	131
Heat Aging (90℃/1000hr)	Tensile Strength	ISO 527	50mm/min	Retention %	56	56
	Notched Charpy Impact	ISO 179-1	KJ/m ²	Retention %	47	49
Others	TVOC	LGC Methcod	250℃, 10min	μg/g	1129	351
		VDA278	90℃		< 0.1	< 0.1
	Odor	VDA270 (B,3)	80℃, 2hr	Level	3	2

Note) Typical values are only for material selection purpose, and variation within normal tolerances are for various colors. Values given should not be interpreted as specification and not be used for part or tool design.

Goal Two: Providing Better Environmental Benefit

Goal Two Problem : Providing Better Environmental Benefit is Not Simple

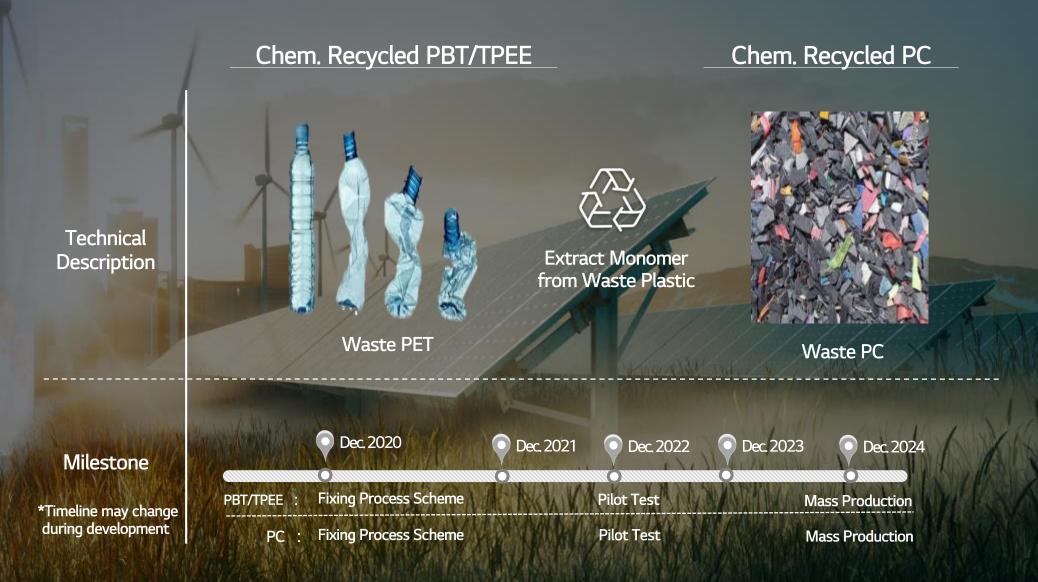
Life Cycle Assessment (LCA)

Full Examination and Calculation of Entire Value Chain

System Boundary Input Output Refining Raw Material Manufacturing Raw Material **Emission to Air** Distribution **Emission to Water** Electricity **Emission to Soil** Steam Gas/Energy Usage of Product Waste By Products Water Consumption Recycling Waste

PCR PC 50% PC/ABS -40%

CO₂ Emission


-30%

Cumulative Energy Demand

Compared to virgin product (through LCA¹⁾ Tool), it has been proven that using PCR products result in reduction of environmental factors such as CO2 emission, water consumption and cumulative energy demand. As PCR content (%) increases, reduction level increases accordingly.

Chemical Recycle

Bio-Based

Bio PBT/TPEE and Bio PA56 (Replace PA66)

Technical Description

Fermentation of Bio-Mass Source (Cultivated from Industrial Source Purpose)

Corn

Sugarcane

Milestone

*Timeline may change during development

Bio PBT/TPEE : Pilot Test

Bio PA56 Compound THE WHITE BY TAKE

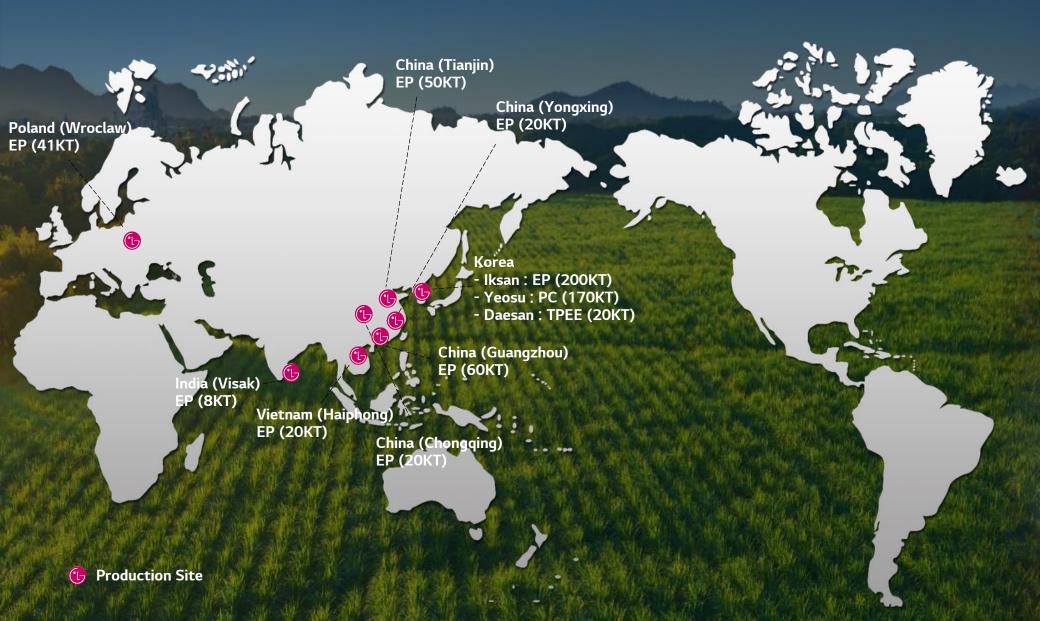
Sep. 2020

Pilot Test

Dec. 2020

Mass Production

Dec. 2021


Dec. 2024

Bio-BDO Production (In-house)

Bio-Mass Balanced

Global Plant Location

Next Step

Based on customer's carbon neutral target, LG Chem would like to propose potential paths for new development and eventually lead to strong partnership.

Material Innovation

<u>Target</u>

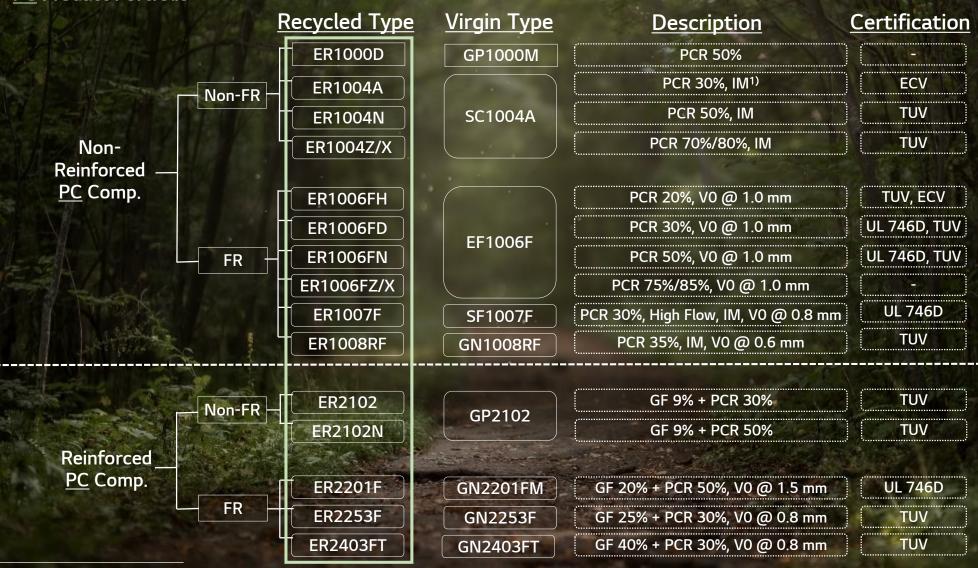
Develop customized product as of virgin-like quality with far better environmental benefit

Material PC, PC/ABS, PA56 (replace PA66), PBT, TPEE

Technology

- Mechanical Recycle
- Chemical Recycle
- Bio-Based
- Bio-Mass Balanced

Renewable Electricity


Target

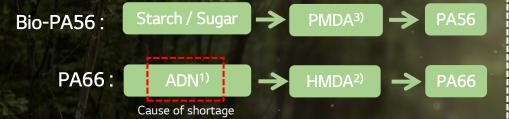
Supply material by using renewable energy

-> Based on RE100 target, LG Chem will expand globally to all business units.

Appendix. Mechanical Recycle


PC Product Portfolio

1) Impact Modifier


Appendix.Mechanical Recycle

PC/ABS and PBT/PET Product Portfolio

Appendix. Bio-PA56 Advantage

Supply Stability

Carbon Footprint (Based on Neat Resin)

- Bio-PA56: 3.4kgCO₂/kg
 *Source: PA56 supplier LCA analysis data
- PA66 : 6~8kgCO₂/kg

*Source:

Korea - LCI DB Government of Environment : 7.08kgCO₂/kg Europe - Plastic Europe LCA eco profile : 6.4kgCO₂/kg

Capacity

- Bio-PA56 Supplier (Partner) Capacity
 - → 100kMT
 - * Supplier can control capacity of Bio-PA56 and Bio-PA510 flexibly within Capa. 100kMT
- LG Chem EPC Compound Capacity
 - → 391kMT
 - * EU: 41kMT(Poland-Wroclaw)

China: 151kMT(Guangzou, Yongxing, Tianjin, Chongqing)

Korea: 180kMT(Iksan)

Others: 11kMT(Vietnam-Haipong), 8kMT(India-Visak)

No Food Competition

- Industrial Corn, Wheat
 - : Sources which cannot be used as food or feed
- Cultivated for industrial purpose from contracted individual famers (transparently traceable)

